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The connection between centrifugal instability
and Tollmien–Schlichting-like instability for

spiral Poiseuille flow
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For spiral Poiseuille flow with radius ratio η ≡ Ri/Ro = 0.5, we have computed com-
plete linear stability boundaries for several values of the rotation rate ratio µ ≡ Ωo/Ωi ,
where Ri and Ro are the inner and outer cylinder radii, respectively, and Ωi and Ωo

are the corresponding (signed) angular speeds. The analysis extends the previous
range of Reynolds number Re studied computationally by more than eightyfold,
and accounts for arbitrary disturbances of infinitesimal amplitude over the entire
range of Re for which spiral Poiseuille flow is stable for some range of the Taylor
number Ta . We show how the centrifugally driven instability (beginning with steady
or azimuthally travelling-wave bifurcation of circular Couette flow at Re =0 when
µ < η2) connects, as conjectured by Reid (1961) in the narrow-gap limit, to a non-
axisymmetric Tollmien–Schlichting-like instability of non-rotating annular Poiseuille
flow at Ta = 0. For µ > η2, we show that there is no instability for 0 � Re � Remin.
For µ = 0.5, Remin corresponds to a turning point, beyond which exists a range of
Re for which there are two critical values of Ta , with spiral Poiseuille flow being
stable below the lower one and above the upper one, and unstable in between. For
the special case µ = 1, with the two cylinders having the same angular velocity, Remin

corresponds to a vertical asymptote smaller than found by Meseguer & Marques
(2002), whose results for µ > η2 fail to account for disturbances with a sufficiently
wide range of azimuthal wavenumbers.

1. Introduction
Stability of steady, axisymmetric, incompressible flow driven by differential rotation

of coaxial circular cylinders has been investigated extensively since the work of Taylor
(1923). Spiral Poiseuille flow (SPF), driven by cylinder rotation and an axial pressure
gradient, has been of interest since the experiments of Cornish (1933) and theoretical
work of Goldstein (1937), and is important in a number of applications. Papers by
Takeuchi & Jankowski (1981) and Ng & Turner (1982) presented the first correct
theoretical results concerning the stability of SPF with respect to non-axisymmetric
disturbances, and marked the beginning of a more complete understanding of its
stability. The best treatments of the stability of this flow are found in their papers,
where older work is discussed extensively.
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For the radius ratio η ≡ Ri/Ro =0.5 and rotation rate ratios µ ≡ Ωo/Ωi = −0.5, 0,
and 0.2, Takeuchi & Jankowski investigated the stability of SPF experimentally for
0 � Re � 150 and computationally for 0 � Re � 100, where Ri and Ro are the radii of
the inner and outer cylinders whose respective constant (signed) angular speeds are
Ωi and Ωo, the Reynolds number Re is defined by VZ (Ro − Ri) /ν, and VZ and ν are
the mean axial speed of the base flow and the kinematic viscosity, respectively. They
found that the critical value of the Taylor number Ta ≡ Ωi (Ro − Ri)

2 /ν is strongly
affected by Re and µ. For µ = 0 and 0.2, Tacrit initially increases as Re increases from
zero, with the critical disturbance remaining axisymmetric. This stabilization continues
until a (globally) maximum Tacrit is reached at some Re. Beyond the maximum, for
µ =0, Tacrit decreases but still exceeds its Re = 0 value over the entire Re range
considered by Takeuchi & Jankowski, while for µ = 0.2, Tacrit falls below its Re = 0
value. For µ = −0.5, Tacrit decreases as Re increases from zero (i.e. SPF is destabilized
by sufficiently slow axial flow) with a critical azimuthal wavenumber (mcrit) of 1, and
continues to decrease until a local minimum is reached. As Re increases further, the
critical Ta increases until mcrit changes to 2, beyond which point Tacrit decreases with
Re until reaching a second (lower) local minimum. For still larger Re, Tacrit increases
monotonically with Re over the range considered by Takeuchi & Jankowski. For
µ =0 and 0.2, experimental and computational results are in excellent agreement for
Re � 40, with experimental values of Tacrit at higher Re exceeding computed values to
an extent that increases with Re. (Use of the symbols Re and Ta in this paper to refer
to Reynolds and Taylor numbers defined differently by others implies conversion to
our definitions.) For µ = −0.5, the experimental Tacrit exceeds the computed value
over the entire range of Re. For each µ, however, the experimental and computed
stability boundaries are qualitatively similar.

In contemporaneous work, Ng & Turner (1982) performed computations for
η = 0.77 and 0.95, with µ =0. They considered axisymmetric and non-axisymmetric
disturbances over 0 � Re � 6000 for both radius ratios, and axisymmetric disturbances
over 6000 < Re � 7739.5 for η = 0.95. For both radius ratios, Tacrit was found
to increase as Re increases from zero, ultimately reaching a broad plateau. For
η = 0.95, the Ta at which SPF becomes unstable with respect to axisymmetric
disturbances decreases rapidly beyond Re =6000. Their results agree well with the
µ =0 experimental results of Mavec (1973) up to Re = 400 for η = 0.77 and Snyder
(1962, 1965) up to Re = 200 for η ≈ 0.95.

Since the investigations of Takeuchi & Jankowski and Ng & Turner, work on SPF
has focused on its use at low Re as an open system to study convective and absolute
instabilities and noise amplification and noise-sustained structures (Babcock, Ahlers
& Cannell 1991, 1994; Babcock, Cannell & Ahlers 1992; Lücke & Recktenwald
1993; Recktenwald, Lücke & Müller 1993; Tsameret & Steinberg 1991a, b, 1994a;
Swift, Babcock & Hohenberg 1994; Tsameret, Goldner & Steinberg 1994), pattern
formation and supercritical mode structure (Bühler & Polifke 1990; Raffäı & Laure
1993; Tsameret & Steinberg 1994b; Büchel et al. 1996; Wereley & Lueptow 1999;
Moser et al. 2000; Moser, Raguin & Georgiadis 2001; Pinter, Lücke & Hoffmann
2003), and secondary instabilities (Lueptow, Docter & Min 1992). Closely related
filtration flows in which one cylinder is porous (Min & Lueptow 1994; Kolyshkin &
Vaillancourt 1997; Johnson & Lueptow 1997), and flows in which the axial velocity
component is time-periodic (Hu & Kelly 1995; Weisberg, Kevrekidis & Smits 1997;
Marques & Lopez 2000) have also attracted interest.

More recently, Meseguer & Marques (2002) reported linear stability computations
for η = 0.5. For µ �= 1, they considered an Re range (0 � Re � 125) similar to those
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considered by Takeuchi & Jankowski, while computations for µ = 1 extended up
to Re = 4000. Their µ = 0 results were indistinguishable from those of Takeuchi
& Jankowski, while no comparison was made to experiments or computations of
Takeuchi & Jankowski for µ = −0.5 or 0.2, or to computations of Joseph & Munson
(1970) for µ = 1.

Despite considerable interest in SPF, the complete linear stability boundary in, say,
the (Ta ,Re)-plane, has not been determined for any combination of the remaining
parameters. To the best of our knowledge, the only computational work on the
stability of SPF for any combination of µ and η since the work of Takeuchi &
Jankowski and Ng & Turner is that of Recktenwald et al. (1993) and Pinter et al.
(2003), limited to the range 0 � Re � 20, and that of Meseguer & Marques (2002).

Since Reid (1961) conjectured, in the narrow-gap context, that low-Re stabilization
of SPF by axial flow must give way to an instability of Tollmien–Schlichting (TS) type
at higher Re, that connection has been made only for µ = 0 and η =0.95, and then
only for axisymmetric disturbances (Ng & Turner 1982). As shown by Cotrell, Rani
& Pearlstein (2004, hereinafter referred to as Part 2), transition from a centrifugal
instability to a TS-like instability occurs at Re = 7716 for this µ and η, with non-zero
azimuthal wavenumbers for both modes, in a range (6000 � Re � 7739.5) in which
the work of Ng & Turner was restricted to axisymmetric disturbances.

Here, we report complete SPF stability boundaries for η =0.5, the radius ratio
considered by Takeuchi & Jankowski and Meseguer & Marques (2002). The results
account for arbitrary infinitesimal disturbances and extend the range of Re studied by
more than eightyfold, covering the entire range of Re for which SPF is linearly stable
for some range of Ta . We consider µ = 0, in which case the outer cylinder is fixed, as
well as µ > 0 and µ < 0 (co- and counter-rotating cylinders, respectively). For µ<η2,
we connect the centrifugally driven instability at Re = 0 to the non-axisymmetric
TS-like instability of annular Poiseuille flow (Mahadevan & Lilley 1977; Sadeghi &
Higgins 1991) at Ta = 0. For µ > η2, for which Synge (1938) showed that no linear
instability is possible for Re = 0, we demonstrate the exsistence of a turning point for
µ �= 1 and a vertical asymptote for µ = 1.

The paper is organized as follows. In § 2, we briefly present the formulation. The
numerical approach is described in § 3. Complete stability boundaries for η = 0.5
are presented for µ = 0 (§ 4.1), µ > 0 (§ 4.2), and µ < 0 (§ 4.3). This is followed by
a discussion in § 5, and some conclusions in § 6. Results for the larger values of η

pertinent to most experiments are reported in Part 2, where extensive comparison is
made to experimental data for a wide range of Reynolds numbers and rotation rate
ratios.

2. Formulation
For a constant-property fluid, we consider flow between concentric circular cylinders

driven jointly by a constant axial pressure gradient and rotation of one or both
cylinders. We choose an inertial frame in which the cylinders have no axial velocity.
The governing equations are non-dimensionalized using the dimensionless radial
coordinate r = R/(Ro − Ri), axial coordinate z = Z/(Ro − Ri), time τ = tVZ/(Ro − Ri),

velocity v = V/VZ , and pressure p = P/(ρV
2

Z ) employed by Takeuchi & Jankowski.
The steady, axisymmetric, fully developed base flow satisfying no-slip conditions

on the rigid inner and outer walls at r = η/(1 − η) and 1/(1 − η), respectively, is

vrb = 0, (2.1a)
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vθb =
Ta

Re

[
r(µ − η2)

(1 − η2)
+

η2(1 − µ)

r(1 − η)3(1 + η)

]
, (2.1b)

vzb = 2

[
[1 − r2(1 − η)2] ln η − (1 − η2) ln[r(1 − η)]

1 − η2 + (1 + η2) ln η

]
. (2.1c)

With this non-dimensionalization, the base flow for fixed η consists of an axial
component whose profile and magnitude are constant, and an azimuthal component
whose profile depends on µ and whose magnitude is proportional to Ta/Re.

The disturbance velocity and pressure fields (denoted by ′) in normal mode form are

[
v′(r, θ, z, τ )

p′(r, θ, z, τ )

]
=

[
ṽ(r)

p̃(r)

]
exp [i (kz + mθ) + στ ] (2.2)

where k, m, and σ are the axial wavenumber, azimuthal wavenumber, and temporal
eigenvalue, respectively. We take k to be real and σ to be complex. Neglecting non-
linear terms, we obtain a homogeneous linear ordinary differential equation system in
the radial coordinate for the disturbance velocity components and pressure, equivalent
to equations (6a–d) of Takeuchi & Jankowski.

Stability of SPF has been studied using three different parametrizations. Takeuchi &
Jankowski and Ng & Turner reported critical Taylor numbers versus Re for selected
µ. Snyder (1965) and Mavec (1973) presented critical values of an inner-cylinder
Taylor number versus an outer-cylinder Taylor number for selected Re. Finally,
Meseguer & Marques (2002) presented critical inner-cylinder Taylor numbers versus
Re for selected values of an outer-cylinder Taylor number. For the parametrization
of Takeuchi & Jankowski and Ng & Turner chosen here, the profiles of the azimuthal
and axial velocity components are independent of Ta and Re, allowing centrifugal
and axial shear effects to be assessed independently of profile changes at fixed µ, as
in the limiting cases of annular Poiseuille flow (no rotation) and circular Couette flow
(no axial pressure variation).

3. Numerical approach
We discretize the disturbance equations by collocation, using Mp and Mp − 1

Chebyshev polynomials to represent the disturbance velocity components and
pressure, respectively. The momentum and continuity equations are collocated at
Mp − 2 interior Gauss–Lobatto points and Mp − 1 interior Gauss points, respectively,
and the boundary conditions are satisfied explicitly, giving a generalized matrix
eigenvalue problem

Ax = σBx, (3.1)

of dimension 4Mp − 1, whose temporal eigenvalues σ = σr + iσi are found using
LAPACK.

For given Re, µ, and η, we seek critical values of Ta , for which at least one temporal
eigenvalue has σr =0 for some m and k, and all other σ lie in the left half-plane for
all m and k. As discussed by Takeuchi & Jankowski, Ng & Turner, and Meseguer &
Marques (2002), analysis can be restricted to k � 0 without loss of generality.

To compute critical values of Ta , we begin with 153 � Mk � 202 discrete axial
wavenumbers non-uniformly distributed over 0<k � 100. For each m considered
(vide infra), we do ‘axial wavenumber traverses’ at fixed Ta , until we locate a value
(Tas) stable at each of the Mk wavenumbers and another (Tau) unstable for at least
one k. For each of Tas and Tau, we identify the kj , among the Mk considered,
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at which σr assumes its maximum, and fit a quadratic through the points (σr , k),
with k = kj−1, kj , and kj+1. Differentiating, we estimate values of k maximizing
σr at Tas and Tau, and use this process to iteratively refine k at each Ta until
| 1 − σmax

r,n+1/σ
max
r,n | <ε1. Once maximum values of σr (negative for Tas and positive

for Tau) and the corresponding k are found, secant iteration between Tas and Tau

is used to estimate a new Ta1 at which σmax
r vanishes. A wavenumber traverse at

this Ta gives the sign of σmax
r , which determines whether Tas or Tau is replaced.

Secant iteration is continued until | 1 − T al+1/T al | <ε2. (Requiring convergence of
| 1 − T as/T au | gave indistinguishable stability boundaries.) At this juncture, for each
m we have one or more extremal values of Ta and associated values of k. For each
m, such a (k, Ta) pair corresponds to an extremum on a (k,Ta) neutral curve (i.e. a
curve dividing portions of the (k, Ta)-plane in which no temporal eigenvalue lies in
the right half-plane (RHP), from portions in which one or more eigenvalues lie in the
RHP). The critical azimuthal wavenumber mcrit is determined as follows. Except when
µ � η2, each stability boundary begins at Re = 0, where mcrit is easily found (DiPrima
& Swinney 1985). A range of m, typically of width 6–20, centred about this initial m,
is considered, and mcrit is determined as the value for which no eigenvalues lie in the
RHP for any combination of m and k at the extremal Ta . The corresponding critical
axial wavenumber and wave speed are denoted by kcrit and ccrit = −σi,crit /kcrit. For
Re > 0, the initial estimate of mcrit is obtained from results at nearby values of Re.

For µ>η2, the procedure is identical, except that mcrit cannot be estimated from
mcrit for circular Couette flow at Re = 0, which is stable with respect to all infinitesimal
disturbances. Instead, we first find a (positive) Re for which one or more unstable
values of Ta exist for some m. We then compute extremal values of Ta for each m in
a range centred about m =0. After mcrit is found for this initial Re, we use it as the
starting point to compute the remainder of the stability boundary as described above.

For each µ, we examined a range of m (sometimes not identical to the initial range),
sufficiently large that it was clear that Tacrit varies monotonically for m beyond its
limits. As shown in § 4, mcrit � 0 unless µ > η2. Nonetheless, for each µ < η2, spot checks
were performed for m < 0, and in no case was a neutral Ta found below the Tacrit value
computed for m � 0, consistent with the results of Takeuchi & Jankowski. The im-
portance of considering a sufficient range of m cannot be overemphasized (see § 4.2).

For given µ, an upper limit on the range of kcrit was estimated by computing critical
values of Ta , m, and k at several (5–10) Re values distributed over 0 � Re � ReAP

using a very large range of k, where ReAP is the critical Re for (non-rotating) annular
Poiseuille flow. The values of kcrit were used to choose the discrete set of k used at
intermediate Re for given µ. The resulting continuous dependence of Tacrit on Re
strongly suggests that this approach is a correct one and has been correctly applied.

As shown in § 4.2, there are values of µ for which ranges of Re exist in which
there are two or three critical Ta . In these cases, closed disconnected neutral curves
(cf. Lopez, Romero & Pearlstein 1990 and references cited therein) exist whose
extrema must be found. While techniques developed to do this systematically for
stability problems in which the constant-coefficient differential equations allow closed-
form solution (Terrones & Pearlstein 1989) can be generalized to systems requiring
approximate spatial discretization, rapid growth of computational complexity with
matrix size makes that approach impractical for the level of resolution required for
most non-zero base flows. Thus, after first recognizing the existence of an Re range in
which multiplicity occurs, we used the procedure described above with several pairs
of initial Ta values. In each case, the topology of the computed stability boundary
was consistent with all critical values having been found.
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Mp γ Mp γ

10 1.78 × 10−2 20 5.63 × 10−7

12 7.77 × 10−3 22 1.11 × 10−7

14 1.24 × 10−3 24 1.5 × 10−8

16 8.06 × 10−5 26 1.0 × 10−9

18 1.39 × 10−6

Table 1. Discretization convergence γ = |Tacrit,Mp
− Tacrit,Mp,max

| for Re= 100,
µ= 0, η = 0.5, and Mp,max = 40.

To validate the code, we compared our results to previous SPF stability calculations.
For all values of Re and µ shown in table 1 of Takeuchi & Jankowski, our computed
values of Tacrit, mcrit, and kcrit agree with theirs to the number of significant figures
shown by them. For η =0.77, our results agree with those tabulated by Ng & Turner
over the entire Re range they considered (0 � Re � 6000), except for mcrit and ccrit at
Re = 300 and 500. For these two cases, our mcrit values are smaller by 1. The T acrit

values agree to within one part in 50 000, and the kcrit values differ by less than 0.1%,
even at the two Re values at which mcrit is discrepant. For η =0.95, our Tacrit values
agree to at least three significant figures with those of Ng & Turner over 0 � Re � 6000.
Agreement is considerably better except at Re = 10, 100, and 2000, where our
mcrit values are 1 larger, 1 smaller, and 1 larger, respectively, and there are small
differences in kcrit. For η =0.95, larger differences over the range 6000 < Re < 7739.5
between the results of Ng & Turner for axisymmetric disturbances and ours for
arbitrary disturbances are discussed in Part 2. Comparison to the low-Re results of
Recktenwald et al. (1993) for µ = 0 is also excellent. For η = 0.5, the root-mean-square
(r.m.s.) difference between our computed Tacrit values at Re =1, 2, . . . , 20 and those
corresponding to the fitted form of Recktenwald et al. is 1.2 × 10−3, with Tacrit � 60
over that range. The r.m.s. differences between kcrit and ccrit values are 1.7 × 10−5 and
1.6 × 10−4, respectively, compared to kcrit and ccrit on the order of 3 and 1, respectively.
Comparison to work for annular Poiseuille flow shows excellent agreement between
our critical Re values and the tabulated results of Sadeghi & Higgins (1991) (less than
1% difference for η = 0.5), and the graphical results of Mahadevan & Lilley (1977) and
Garg (1980) at smaller η.

To ensure that critical values are fully resolved, we checked convergence for a range
of Re at each µ. In general, the number of terms Mp ensuring a specified accuracy for
a given Ta increases with Re. Table 1 shows, for µ = 0 and Re = 100, the magnitude
γ of the difference between Ta values determined using Mp and Mp,max terms, where
Mp,max is the largest Mp used in this case. We have used ε1 = 10−6, ε2 = 2 × 10−7, and
achieved convergence with Mp,max � 40 for each combination of Re, µ, and η. We
believe that the small differences between our results and those of Ng & Turner in
the few cases cited above are due to our use of somewhat more stringent convergence
criteria, parametrized by Mp (spatial resolution), ε1 (axial wavenumber iteration), and
ε2 (Ta iteration).

4. Results
We report complete linear stability boundaries in the (Re,Ta)-plane, accounting

for three-dimensional disturbances, for η = 0.5 at each µ considered by Takeuchi &
Jankowski, as well as at µ = 0.5. The results cover the range from Re = 0 (the
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Figure 1. For µ= 0 and η = 0.5: (a) critical Ta, (b) critical m, (c) critical k,
(d) critical c, versus Re.

Taylor–Couette limit) to ReAP (the µ-independent Re beyond which the base flow is
unstable for every Ta , corresponding to onset of TS-like instability in the non-rotating
annular Poiseuille flow).

4.1. Non-rotating outer cylinder (µ = 0)

Here, we briefly review the µ = 0 results for 0 � Re � 150, and then focus on larger
Re up to ReAP =10 359.

At Re = 0, Tacrit is 68.19 (DiPrima & Swinney 1985), corresponding to onset of
centrifugal instability and Taylor vortices. For small Re, the flow is stabilized by
increasing axial flow (see figure 1a), with Tacrit reaching a maximum of about 104.4
near Re ≈ 61, as shown by Takeuchi & Jankowski. The scalloped stability boundary is
associated with the ‘stair-step’ behaviour of mcrit, as shown in figure 1(b) and discussed
by Takeuchi & Jankowski. As noted by those authors, shear generally destabilizes
SPF for 61 � Re � 150. Figure 1(a) shows that this destabilization continues to about
Re =400.

On a plateau over the range 400 <Re < Re∗ = 9916, Tacrit ( ≈ 88) is greater than its
non-rotating value of 68.19. The existence of this plateau indicates that the magnitude
of the axial component of the base flow does not significantly affect the centrifugal
instability in this range of Re. At Re∗, Tacrit begins a precipitous fall, corresponding
to transition from centrifugal instability to a parallel shear instability (associated
with a critical layer) of TS-type. While the slope of Tacrit vs. Re is discontinuous at
Re∗, Tacrit is a continuous function of Re. The flow is unstable for all Ta beyond
ReAP = 10 359, a value agreeing with the graphical results of Mahadevan & Lilley
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(1977) and Garg (1980) for non-rotating annular Poiseuille flow as well as they can
be read.

Figure 1(b) shows that mcrit increases by one unit at each of seven Reynolds numbers
in the range 0 <Re < 270. (The jump of 2 in mcrit between Re = 40 and 50 shown in
table 1 of Takeuchi & Jankowski is clearly due to the gap between consecutive Re
values.) The critical azimuthal wavenumber drops directly from 7 to 2 as Re passes
through Re∗. On the TS-like branch (Re∗ <Re � ReAP), mcrit =2.

Figures 1(b) and 1(c) show that the discontinuous dependence of kcrit on Re
is associated with jumps in mcrit. For Re < 41, mcrit = 0 or 1 and kcrit increases
monotonically with Re, while for Re � 41, kcrit decreases monotonically over each
constant-mcrit range of Re. For Re � ReAP, kcrit increases discontinuously at each
mcrit jump, leading to the ‘wavenumber fan’ shown. For 260 � Re � Re∗, for which
mcrit = 7, kcrit decreases, nearly inversely with Re, to very small values (kcrit = 0.0422 at
Re = 9914), consistent with visualization of the secondary flow (Nagib 1972; Joseph
1976). As Re passes through Re∗, kcrit increases more than thirtyfold. Between Re∗

and ReAP on the TS-like branch, kcrit varies between 1.481 and 1.479, reflecting the
fact that the TS-like instability is driven by axial shear, and that Re changes by only
about 4% on that branch.

Figure 1(d) shows the piecewise-continuous dependence of ccrit on Re. For small
Re, ccrit is essentially constant (see figure 1d), implying that the dimensional frequency
vanishes linearly as VZ → 0, consistent with the well-known result for Taylor–Couette
instability with µ = 0. Since mcrit = 0 for small Re, this corresponds to transition from a
steady axisymmetric disturbance flow at Re = 0 to a time-periodic axisymmetric flow at
Re > 0, as Taylor-like vortices propagate axially. As with kcrit, discontinuities in ccrit at
higher Re correspond to jumps in mcrit. For 0 < Re < 260, ccrit decreases monotonically
over each range of Re for which mcrit remains unchanged. Over 260 <Re <Re∗, for
which mcrit = 7, ccrit ≈ 1.86. As Re increases beyond Re∗, ccrit discontinuously drops to
values characteristic of instability for annular Poiseuille flow, with the dimensionless
wave speed values suggesting existence of a critical layer for Re∗ < Re <ReAP.

4.2. Co-rotating outer cylinder (µ > 0)

Takeuchi & Jankowski investigated the co-rotating case µ = 0.2 over the ranges
0 � Re � 100 computationally, and 0 � Re � 150 experimentally. We have computed
the complete linear stability boundary partially determined by those authors,
extending Re to ReAP. We also present results for µ = 0.5, beyond the Rayleigh
criterion. Finally, we reconsider the results of Meseguer & Marques (2002) for µ > 0.

The stability boundary for µ = 0.2 (not shown) is somewhat similar to that for
µ =0 (figure 1a). At Re =0, we find Tacrit = 124.7. The critical Ta increases to a
maximum of about 170 near Re = 36. For larger Re, Tacrit decreases monotonically,
first to a broad plateau (Tacrit ≈ 79), and then, beginning at Re∗ = 9979, plunges to
zero at ReAP = 10 359. In addition to the scalloping associated with stepwise variation
in mcrit and the precipitous decline in Tacrit associated with a TS-like instability, the
stability boundary shows that the high-Re plateau lies at a lower Tacrit than the
Re = 0 limit, so that for 64 � Re � Re∗, shear destabilizes SPF relative to the Re = 0
situation. This differs from the µ = 0 case discussed above, and is consistent with the
work of Takeuchi & Jankowski, whose results do not extend to the plateau region.
This trend is opposite to that predicted for µ =0, where Tacrit was higher on the
high-Re plateau than at Re =0. The dependence of mcrit on Re is similar to that for
µ =0, with the largest value (on the plateau) being 6 rather than 7. Variation of kcrit

and ccrit with Re is also similar to that for µ = 0.



Instability of spiral Poiseuille flow 339

105

104

103

102

101

101 102 103 104 105

T
a c

ri
t

(a)

8

4

0

–4

–8

–12
101 102 103

Re
104 105

m
cr

it

(b)

3

2

1

0

–1
101 102 103 104 105

k c
ri

t

(c)

20

10

0

–10

–20

–30

–40
101 102 103

Re
104 105

c c
ri

t

(d)

Figure 2. For µ= 0.5 and η = 0.5: (a) critical Ta, (b) critical m, (c) critical k,
(d) critical c, versus Re.

Figure 2(a–d) shows the stability boundary, mcrit, kcrit, and ccrit for µ = 0.5. Since
µ > η2, the viscous extension of the Rayleigh criterion (Synge 1938) shows that no
linear instability is possible for Re = 0. In fact, in this case figure 2(a) shows that SPF
is linearly stable up to a turning point at Remin = 70.2, beyond which Tacrit increases
rapidly with Re on one branch of the stability boundary, while on the other Tacrit

decreases to a plateau (Ta ≈ 70), and then falls precipitously at Re∗ = 10 049, reaching
zero at ReAP = 10 359. Thus, for Remin � Re � ReAP, SPF is linearly stable below
the lower critical Ta and above the upper critical value, and unstable in between.
(Computation on the upper branch is difficult beyond Re = 1000 due to rapid growth
in the number of expansion functions needed to maintain adequate resolution.)

Multi-valuedness of the stability boundary in figure 2(a) is associated with
disconnected neutral curves in the (k, Ta)-plane for Re >Remin. Consistent with the
work of Synge, for µ = 0.5 there are no neutral curves if Re < Remin. Figure 3 shows
that for Re = 100 the neutral curves for −14 � m � −3 and 3 � m � 9 are closed,
and each extends over only a finite Ta range. At Remin, the first neutral curve (for
m = −6; see figure 2b) appears as a point, and grows as Re increases. For each m,
the process is essentially identical to the appearance of closed disconnected neutral
curves in buoyancy-driven stability problems (Pearlstein 1981; Pearlstein, Harris &
Terrones 1989; Terrones & Pearlstein 1989; Lopez et al. 1990; Ali & Weidman 1990),
and as in those cases, a multi-valued stability boundary (figure 2a) results. Between
Re =Remin and Re = 100, the other neutral curves shown in figure 3 first appear as
points, and grow as Re increases. The Re = 100 neutral curves were determined by a
grid search for instability in the (k, Ta)-plane, using k and Ta increments of 0.01 and
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10, respectively. At Re = 100, these are the only neutral curves found for −20 � m � 11
over the ranges 0.1 � k � 10 and 0 � Ta � 1000.

As shown in figure 2(b), mcrit = 2 on the TS-like branch, and jumps to 6 as Re
decreases through Re∗. It remains 6 as Re decreases further on the lower branch of
the stability boundary until jumping to −6 at Re = 84, just short of the turning point.
The value of mcrit is −6 through the turning point at Re = 70.2, with a jump to −7 at
Re = 73 on the upper branch, followed by unit decreases as Re increases. (Vertical line
segments with no filled circles between their endpoints in figure 2(b–d) denote jump
discontinuities in mcrit, kcrit, and ccrit, and are provided to clarify variation of these
quantities along the stability boundary.) We find no Re for which an axisymmetric
disturbance is critical.

Figure 2(c) shows that kcrit is again about 1.48 on the TS-like branch, and jumps
to 0.026 as Re decreases through Re∗. As Re decreases further on the upper branch
of the stability boundary, kcrit increases roughly like 1/Re (204 � kcritRe � 235 for
8.6 � Re � 9000), until mcrit jumps from 6 to −6, at which point kcrit jumps from
2.41 to 1.53. On the mcrit = −6 portion of the lower branch of the stability boundary,
kcrit increases as the turning point at Re =70.2 is approached, and continues to
increase on the upper branch to 1.70 at Re =70.3. Beyond that point, kcrit decreases
as Re increases on the mcrit = −6 portion of the upper branch, reaching 1.69 at
Re = 72.8. At that point, mcrit decreases to −7, and kcrit jumps to 1.97 before decreasing
monotonically to 1.79 at Re = 118.6. As Re increases further, kcrit exhibits ‘fan-like’
behaviour, decreasing monotonically as Re increases for each mcrit, and increasing
discontinuously at each jump decrease of mcrit.

On the TS-like branch, ccrit varies between 0.40 and 0.41 (figure 2d), and jumps
discontinuously to about 2.50 as Re decreases through Re∗. It remains nearly constant
on the plateau, increasing slightly as the transition from mcrit = 6 to −6 is approached.
At that transition, ccrit discontinuously jumps to negative values, and decreases
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−∞ < m < ∞ m � 0

(a) Ta Recrit kcrit mcrit Rem�0 km�0 mm�0

100 115.5 0.9839 −6 151.1 1.016 5
225 87.65 0.8087 −8 103.2 0.8844 6
300 85.18 0.6265 −8 99.97 0.6968 6
400 83.88 0.4778 −8 98.23 0.5371 6

1000 82.55 0.1944 −8 96.41 0.2201 6
2000 82.36 0.09740 −8 96.16 0.1108 6

−∞ < m < ∞ m � 0

(b) Re Tacrit kcrit mcrit Tam�0 km�0 mm�0

150 79.82 0.9200 −6 100.7 1.018 5
200 71.52 0.7550 −6 84.51 0.8695 5
300 66.82 0.5310 −6 76.16 0.6257 5
500 64.70 0.3263 −6 72.55 0.3891 5

1000 63.86 0.1640 −6 71.13 0.1975 5

Table 2. (a) Minimum neutral values of Re, and (b) minimum neutral values of Ta
(and corresponding values of k and m) for different ranges of m at selected Re with

µ= 1 and η = 0.5.

monotonically through the turning point and beyond. The small discontinuities in
ccrit at the mcrit jumps on the upper branch are indiscernible in figure 2(d). We note
that the negative values of ccrit on the upper branch and on part of the lower branch
of the stability boundary correspond to disturbances propagating upstream against
the axial flow, and that ccrit does not vanish at any point on the stability boundary.
This point is discussed in § 5.6.

The special case µ = 1, corresponding to a base flow with uniform angular velocity,
has been considered by Meseguer & Marques (2002). Their figure 13 shows the critical
Ta approaching 70.69 (with mcrit = 5) at high Re, and the critical Re approaching
a vertical asymptote at 96.14 (with mcrit =6) at high Ta . The latter result disagrees
with the computations of Joseph & Munson (1970), who showed that for η = 0.5 and
µ = 1, 2Recrit ≈ 165 (Joseph 1976, figure 46.1) in the Ta → ∞ limit.

The results presented in tables 2(a) and 2(b) show that the asymptotes reported by
Meseguer & Marques (2002) are incorrect, with the correct horizontal and vertical
asymptotes being near Tacrit = 63.86 (with mcrit = −6) and Recrit = 82.33 (mcrit = −8),
respectively, the latter value being very close to that reported by Joseph (1976).
Tables 2(a) and 2(b) show that the values reported by Meseguer & Marques (2002)
correspond very closely to the smallest Ta (71.13) and Re (96.16) obtained when only
positive values of m are considered, providing convincing evidence that those authors
considered an insufficient range of azimuthal wavenumbers.

4.3. Counter-rotating outer cylinder (µ < 0)

For µ = −0.5, figure 4(a) shows the complete stability boundary partially determined
by Takeuchi & Jankowski (1981), who showed that axial flow destabilizes SPF
with respect to centrifugal instability from Re = 0 up to Re ≈ 13. The critical Ta
then rises slightly to a local maximum near Re = 21, before falling and reaching
another minimum near Re = 32. Beyond that point, axial flow stabilizes SPF,
with Tacrit increasing monotonically until Re ≈ 200. The scalloped nature of the
stability boundary, corresponding to step changes in mcrit, is evident. The critical Ta
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( ≈ 124) remains approximately constant for 200 <Re < Re∗ = 9683, beyond which a
precipitous drop occurs to Ta = 0 at ReAP. The initial decrease of Tacrit as Re increases
from zero contrasts with the behaviour found for other µ. We note that there are
values of Ta for which there exist up to three disjoint ranges of stable positive Re
(discussed in § 5.5).

Figure 4(b) shows that mcrit again increases in unit steps with increasing Re, starting
from 1 for 0 � Re < 20 and increasing to 8 at Re∗. As for µ = 0.5, there is again no
Re for which mcrit =0. As Re increases through Re∗, mcrit jumps directly from 8 to 2.
For Re∗ � Re � ReAP, mcrit remains at 2.

As is the case for other values of µ, figure 4(c) shows that for µ = −0.5, kcrit is
again a piecewise-continuous function of Re. We find σi,crit �= 0 and mcrit = 1 at Re =0,
corresponding to the counter-rotating Couette flow losing its stability to a non-
axisymmetric time-periodic disturbance flow. Thus, as suggested by figure 4(d), ccrit

becomes unbounded as Re → 0. The critical frequency remains nearly constant over
the Re range for which mcrit = 1, corresponding to ccrit being inversely proportional to
Re. Subsequent increases in mcrit lead to progressively smaller jump increases in ccrit.

5. Discussion
5.1. Dependence of the stability boundary on µ

Figure 5 shows that at Re = 0, Tacrit is higher for the co- and counter-rotating base
states than for µ = 0. (The µ = 0.5 case, for which µ>η2, is linearly stable for all Ta
at Re = 0.) Like the µ = 0.2 case, for which µ = 0.8η2 is only 20% below the Rayleigh
criterion, the µ = −0.5 case is also stabilized, relative to µ = 0, by outer-cylinder
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rotation. As Re increases, the µ =0.2 co-rotating base flow becomes less stable than
the µ = 0 and −0.5 cases. For each µ < η2, Tacrit approaches a nearly Re-independent
value beyond about Re =500 (with the lower branch of the multi-valued µ = 0.5
stability boundary also approaching such a plateau). For the µ values considered,
Tacrit on the plateau decreases monotonically with increasing µ. At Re∗ values
depending very weakly on µ, centrifugal instability on the plateau ultimately gives
way to a TS-like instability, with Tacrit falling rapidly over Re∗ <Re < ReAP, where
ReAP is independent of µ.

For µ < η2, the stability boundary extends from Re = 0 to Re = ReAP = 10 359. For
µ > η2, the stability boundary exists only for Remin � Re � ReAP, where we have shown
(§ 4.2) that Remin can be a turning point (for µ = 0.5) or vertical asymptote (for µ = 1).
For µ = 1, there is an asymptotic Re of about ∼ 82.5 as Ta → ∞ (Joseph & Munson
1970), consistent with our values of Recrit = 82.36 and 82.33 at Ta =2000 and 3000,
respectively. Table 3 shows that differential rotation (µ �= 1) stabilizes SPF at high
Ta for µ = 0.9 and 1.2, and suggests that Remin is a turning point for µ > η2, except
when µ = 1, in which case Remin corresponds to a vertical asymptote.

5.2. Comparison to previous work

Except for the small differences identified in § 3, and attributed there to our slightly
more stringent convergence criteria, our computed results for µ<η2 are essentially
identical to those of Takeuchi & Jankowski (1981) over the Re range considered by
them. Our results are very similar to their experimental data at low Re, and differ in
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µ

Ta 0.9 1.0 1.2

300 80.74 (−8) 85.18 (−8) 92.33 (−6)
1000 86.31 (−6) 82.55 (−8) 132.9 (−5)
3000 144.2 (−5) 82.33 (−8) 264.0 (−5)

Table 3. Reynolds numbers on the stability boundary and azimuthal wavenumbers
(in parentheses) for η = 0.5 and selected values of µ and Ta.

the higher part of their experimental range (0 � Re � 150) in the same way that their
computations (for 0 � Re � 100) differed from their own experiments. Also, as stated
in § 3, comparison of our computed dimensionless drift velocity ccrit to the ratio ωc/kc

of fitted functional forms computed by Recktenwald et al. (1993) for 0 � Re � 20,
µ =0, and η = 0.5 shows excellent agreement, with the r.m.s. error for Re = 1, 2, . . . ,
20 being 1.6 × 10−4.

For µ = 0, Meseguer & Marques (2002) reported results (their table 1 and figure 2)
very close to the computations and experimental data of Takeuchi & Jankowski for
small Re. For counter-rotating cylinders (µ < 0), they stated that “When the cylinders
are rotating with opposite signs of angular speeds, the centrifugal mechanism is
dominant over the axial shear, as already concluded in Meseguer & Marques (2000),
where the shear was induced by a relative sliding between the cylinders.” As for
µ = −0.5 (figure 4a), there is in fact a transition from centrifugal to TS-like (‘shear’)
instability at higher Re.

Consideration of an insufficient range of azimuthal wavenumbers, identified as the
source of the discrepancy between our µ = 1 results and those of Joseph & Munson
(1970) on the one hand, and those of Meseguer & Marques (2002) on the other (see
§ 4.2), affects other stability boundaries reported by the latter authors. Their figure 4
shows a stability boundary in the (Re,Ta)-plane for Reθ,o ≡ ΩoRo(Ro − Ri)/ν =450
(corresponding to µTa =225 for η = 0.5), beginning at Re = 0 just above
Ta = Reθ,i =900, with µ just below η2 = 0.25. (Meseguer & Marques (2002) denoted
these azimuthal Reynolds numbers by Ri and Ro.) For sufficiently large Re (say,
Re > 40), Ta decreases monotonically, corresponding to increasing values of µ for
Reθ,o fixed. As one continues to smaller Ta on their stability boundary, one reaches a
turning point near Re = 107, with Re now decreasing as Ta decreases. Near Re = 103,
the stability boundary passes through Ta = 450, corresponding to µ =0.5. For µ = 0.5,
figure 4 of Meseguer & Marques (2002) shows SPF to be stable for Re up to about
103, with mcrit = 5 (their figures 4 and 10).

In contradistinction to those results, our computations for µ =0.5 show that the
stability boundary passes through Ta = 450 near Re =86 (see figure 2a), at which
point mcrit = −7 (figure 2b). Over the range of Re considered by Meseguer & Marques
(2002), our figure 6 shows the correct stability boundary in the (Re,Ta)-plane for
µTa ≡ ηReθ,o = 225 (corresponding to Reθ,o =450 and their figure 4), along with the
variation of mcrit along the curve. Results in figure 6 were obtained by selecting Ta ,
calculating µ from µTa = 225, and then computing a critical Re, or by selecting Re,
guessing a µ, computing the corresponding Tacrit, and iterating on µ until µTa = 225.

The correct stability boundary intersects the Re = 0 axis at two Tacrit values, rather
than at a single one shown by Meseguer & Marques (2002). The existence of critical
values of Ta for both the co-rotating (µ > 0, Ta > 0) and counter-rotating (µ < 0,
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Ta < 0) cases for µTa = 225 is consistent with Re = 0 results shown in figure 37.1.b of
Joseph (1976). Steady axisymmetric SPF is stable in a region lying between the upper
and lower portions of the stability boundary. We conjecture that the stability boundary
crosses the Ta =0 axis at ReAP = 10 359, with Ωo(Ro − Ri)

2/ν = µTa maintaining its
constant value of 225 while the sign of Ta (and Ωi) changes. For µTa = 225 and Re
lying between the two turning points (at approximately 75 and 88), there are three
disjoint ranges of Ta =Ωi(Ro − Ri)

2/ν for which SPF is unstable, and two in which
SPF is linearly stable. At Re = 0, Tacrit is invariant with respect to the sign of m, so
that there is a positive critical azimuthal wavenumber, 2, in addition to the negative
value shown. Also note that between Re = 0 and the point near Re = 39.5 at which
µ = η2 = 0.25, Ta (and hence µ) is nearly constant, with Ta varying between 900
(near Re = 39.5) and about 905.3 (near Re = 30), and intersecting the Re = 0 axis near
Ta = 903.3.

Comparison to figure 4 of Meseguer & Marques (2002) shows that even on the
upper portion of the stability boundary, computed by them, the Re dependence of
mcrit is entirely different. The reason is evident from our figure 3, which shows all
neutral curves in the (k, Ta)-plane for µ = 0.5 and Re =100. In that case, SPF is
stable below the minimum of the m =6 neutral curve, and above the maximum of
the m = −7 neutral curve (see also figure 2b). We conjecture that the results in figure
4 of Meseguer & Marques (2002) were obtained without considering m < 0, as for
µ = 1. When the correct asymptotic Re (82.36) is used in equation 5.9 of Meseguer &
Marques (2002), the value of Re∞

eff for SPF in their table 2 is reduced to 66.18, about
20% and 22% (rather than 7% and 9%) below the rotating Hagen–Poiseuille and
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spiral Couette values (82.88 and 85.11) cited, respectively. The lower (µ < 0) portion
of the stability boundary in figure 6 shows that for Ωo(Ro − Ri)

2/ν = 225, Tacrit for
the counter-rotating case is nearly independent of Re up to at least Re = 125.

We also note that the neutral curves shown in figure 5(a–d) of Meseguer & Marques
(2002) are necessarily incomplete, since the critical azimuthal wavenumber shown on
the middle (‘hidden’) branch of the stability boundary in their figure 4 is m =5,
whereas only the m = 3 and m =6 neutral curves are shown in their figure 5(a–d) for
Re values in the range of multiplicity. It is clear that disconnected neutral curves must
exist for several values of m, as we have shown in figure 3 for µ = 0.5 and Re = 100.

5.3. Transition from centrifugal to Tollmien–Schlichting-like instability

In his review of a paper by Chandrasekhar (1960), Reid (1961) conjectured that in the
narrow-gap limit, the low-Re instability of SPF ultimately must connect to a TS-like
instability at high Re. To date, such a connection has been made (for µ = 0 and η =
0.95) only when disturbances are restricted to axisymmetric ones (Ng & Turner 1982).

For each µ considered, transition from centrifugal to TS-like instability occurs
at Re∗, with a discontinuity in the slope of Ta versus Re. This is reminiscent of
transition from Rayleigh–Bénard convection to TS waves in pressure-driven flow
between horizontal plates heated from below (Gage & Reid 1968; Kelly 1994), where
the mean flow has no effect on onset of Rayleigh–Bénard convection. For SPF, Re
affects Tacrit for onset of centrifugal instability (weakly on the plateau), and Ta affects
the critical Re for TS-like instability (weakly). On the portion of the SPF stability
boundary consisting of the plateau and the TS-like portion beyond, the similarity
to plane Poiseuille flow heated from below is quite striking, with coupling between
centrifugal and axial shear effects being very weak.

For each µ, mcrit decreases from its value on the high-Re plateau to 2 at Re∗. For
Re∗ <Re � Recrit, mcrit = 2, so that we refer to instability in this range as ‘Tollmien–
Schlichting-like’, since the ‘true’ TS instability (as η → 1) is axisymmetric. The non-zero
mcrit at ReAP (for η = 0.5 and for η > 0.5, as shown in Part 2) is at variance with the
expectation of an axisymmetric critical disturbance as Re approaches ReAP (Ng &
Turner 1982, p. 101). The critical axial wavenumber, kcrit, increases considerably as
Re increases through Re∗.

5.4. Multiple ranges of stable Ta for fixed Re

For the multi-valued stability boundary found for µ = 0.5, figure 2(a) shows that in
some range of Re, SPF is linearly stable below the lower branch and above the upper
branch, and unstable in between. The behaviour on the lower branch is similar to that
predicted for µ<η2, with Tacrit approaching a plateau value, and falling rapidly to zero
between Re∗ and ReAP. On the upper branch, however, Tacrit increases rapidly with Re.
We interpret this as follows. For µ > η2, the Rayleigh criterion requires that circular
Couette flow (Re = 0) is linearly stable for all Ta . Figure 2(a) shows that SPF is indeed
stable for all Ta for 0 � Re <Remin, and is destabilized by axial shear in a progressively
wider range of Ta as Re increases beyond Remin. For µ = 0.5, it is also apparent that
for Re >Remin, SPF can be destabilized by decreasing Ta across the upper branch of
the stability boundary. For µ > η2 (and µ �= 1), it is unclear whether the upper branch
exists for all Re >Remin, or has a vertical asymptote at some finite Re.

In interpreting figure 2(a), note that crossing the two branches of the stability
boundary at a single Re >Remin does not correspond to the same base flow becoming
unstable at two different values of Ta . (This differs from cases cited in § 4.2, in which



Instability of spiral Poiseuille flow 347

multi-valued stability boundaries have been found for the same base state.) This is
because, for fixed η, the magnitude of the azimuthal component of the base flow (2.1b)
depends on Ta/Re, while the magnitude and profile of the axial component (2.1c) are
invariant. Hence, we interpret the multi-valued stability boundary in figure 2(a) as
meaning that SPF, with fixed profiles of the axial and azimuthal velocity components
and a fixed magnitude of the axial component, is stable for two ranges of the
magnitude of the azimuthal component and unstable in the intermediate range. Only
if the boundary shown in figure 2(a) twice intersected a line Ta = αRe (α constant)
could we state that the same base flow becomes unstable at two different Tacrit values.
We have found no such case.

We next consider experimental verification of the double-valued stability boundary
predicted for µ = 0.5. The existence of a multi-valued stability boundary for SPF
is particularly significant, since SPF is one of only two steady isothermal flows for
which multiple ranges of stability have been predicted, the other being spiral Couette
flow (Meseguer & Marques 2000), for which the nominal base flow necessarily ceases
to exist at a finite time (regardless of the Reynolds and Taylor numbers) for cylinders
of finite length. (For the two-phase parallel shear flow considered by Blennerhassett
(1980), the disconnected neutral curves shown (his figure 5) result from a two-
dimensional linear stability analysis. As discussed by Pearlstein (1987) and Renardy
(1989), Squire’s transformation is applicable to that flow but Squire’s theorem is not,
so that the number of critical values of the Reynolds number cannot be determined
on the basis of a two-dimensional analysis.) For no flow in which multi-valued
stability boundaries have been predicted are we aware of experimental verification
(or attempted verification) of the existence of multi-valued ranges of stability. From
an experimental standpoint, a decided advantage of SPF, compared to doubly and
multiply diffusive quiescent layers in which multiple ranges of stability have been
predicted (Pearlstein 1981; Pearlstein et al. 1989; Terrones & Pearlstein 1989; Lopez
et al. 1990), is that SPF does not require establishment and maintenance of one or
more concentration gradients, which is difficult in systems with the rigid impermeable
boundaries used in the analyses.

To locate two values of Tacrit at fixed Re beyond the turning point at Remin, a
simple approach is to start at two Ta values (with the same µ), greater than and less
than Ta(Remin), and to increase Re from zero, where circular Couette flow is stable
according to the Rayleigh criterion. If for both Ta one can proceed to an Re >Remin

without destabilizing the base flow, one can then stop at that Re, and increase the
smaller Ta and decrease the larger Ta , until both branches of the stability boundary
are located. If there is no Ta pair bracketing Ta(Remin) for which it is possible to
maintain the base flow from Re = 0 to Re > Remin, then one must conclude that
finite-amplitude instability occurs along the path(s) chosen.

5.5. Multiple ranges of stable Re for fixed Ta

Multiplicity results related to those discussed in § 5.4 are apparent in the work of
Takeuchi & Jankowski, whose figure 1(a) shows that for µ =0, Ta passes through a
local maximum near Re = 60, corresponding to existence of multiple critical values
of Re over some Ta range. For µ = 0, our figure 1(a) shows that for each Ta in the
range 68.19 <Ta < 104.4, SPF is stable over a finite Re range not including Re = 0.
For Ta =100, figure 7 shows that the stable Re range lies between the minimum of a
‘banana-shaped’ m =5 neutral curve, and the maximum of a closed and disconnected
m = 2 neutral curve. The other neutral curves shown (m = 0 and 1) pass through
the Re = 0 axis. Since the instability mechanism must be independent of axial and
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azimuthal flow directions, each neutral curve must be symmetric about the Re = 0
axis, from which it follows that in the k � 0 half of the (k, Re)-plane, the m =0 and
m =1 neutral curves are closed.

Invariance of the instability mechanism with respect to the directions of cylinder
rotation and axial flow can be used to represent the stability boundary in the full
(Re,Ta)-plane instead of its positive quadrant. For µ = 0, Tacrit is a unimodal function
of Re for Re � 0, and figure 1(a) shows that for sufficiently small Ta , SPF is linearly
stable over 0 � Re � ReT S(Ta), where ReT S is the critical Re for TS-like instability
between Re∗ and ReAP, and ReT S(0) = ReAP. For µ = 0 and |Ta| � Ta1 = 68.19, it
follows from figure 1(a) that SPF is linearly stable for −ReT S(Ta) � Re � ReT S(Ta),
while for |Ta| >Ta2 = 104.4 there is no stable Re range. In each intermediate Ta
range, −Ta2 � Ta � −Ta1 and Ta1 � Ta � Ta2, there are two disjoint finite ranges
of stable Re, corresponding to gaps between the primary neutral curves and the
extrema of disconnected neutral curves lying between them in the (k, Ta)-plane. One,
for positive Re, was discussed in the previous paragraph. The other, for negative Re,
is its mirror image.

Figure 4(a) shows that for µ = −0.5, Tacrit is not a unimodal function of Re. When
viewed in terms of a critical Ta versus Re in the positive quadrant of the (Re,Ta)-
plane, the stability boundary is single-valued, and there are no closed disconnected
neutral curves in the (k, Ta)-plane at fixed Re. On the other hand, figure 4(a) shows
that there can be one, three, or five positive critical Re for fixed Ta (at, e.g., Ta = 105,
107, and 108, respectively). Multiple critical Re at fixed Ta must correspond to
existence of one or more closed disconnected neutral curves in the (k, Re)-plane, each
with at least two extrema.
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5.6. Direction of wave propagation

For all cases considered other than µ = 0.5, we have mcrit � 0 and ccrit > 0 over the
entire range of Re, and disturbances propagate downstream with the base flow, with
the same helical sense. For µ = 0.5, however, figures 2(b) and 2(d) show that on the
upper branch, mcrit and ccrit are negative. Thus, for µ = 0.5, linear theory predicts that
as Ta increases and crosses the upper branch of the stability boundary, or decreases
through the lower branch sufficiently close to the turning point, SPF becomes unstable
with respect to a disturbance propagating upstream against the mean axial flow, but
with the same helical sense as the base flow. Figure 2(d) shows that ccrit changes sign
discontinuously on the lower branch at the transition from mcrit = 6 to −6 near the
turning point, and is non-zero on the entire stability boundary.

6. Conclusions
For η = 0.5, the complete linear stability boundaries for spiral Poiseuille flow

presented in § 4 show that for each rotation rate ratio µ < η2 considered, we can
connect the onset of instability for circular Couette flow with no mean axial flow to
the onset of instability in annular Poiseuille flow without rotation. For µ>η2, SPF
is linearly stable for 0 � Re < Remin. For µ > η2 and µ �= 1, there is a turning point at
Remin, beyond which there exists a range of Re for which the stability boundary is
multi-valued and there are two disjoint ranges of stable Ta . For the special case µ = 1,
there is a vertical asymptote in the (Re,Ta)-plane at Remin = 82.33, a value differing
from that found by Meseguer & Marques (2002), apparently due to consideration of
an insufficient range of the azimuthal wavenumber m.

For µ < η2, a small mean axial pressure gradient generally stabilizes SPF with
respect to centrifugal instability, as shown by earlier investigators. In each case, Tacrit

reaches a plateau before falling precipitously to zero as Re approaches ReAP, the
critical Reynolds number for annular Poiseuille flow. Transition from centrifugal
instability at small Re to a shear instability of Tollmien–Schlichting type occurs at
Re∗ (slightly below ReAP), at which mcrit drops from its value on the high-Re plateau
to 2.
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